IOE engine
The intake/inlet over exhaust (IOE) engine, also known as F-head (in the USA) and pocket valve, is a valvetrain configuration used in early four-stroke internal combustion engines. The configuration consists of inlet valves located in the cylinder head and exhaust valves located in the cylinder or engine block.
IOE engines were widely used in early motorcycles, initially with the inlet valve being operated by engine suction instead of a cam-activated valvetrain. When the suction-operated inlet valves reached their limits, the manufacturers modified the designs by adding a mechanical valvetrain for the inlet valve. A few automobile manufacturers, including Willys and Rolls-Royce, also made IOE engines for their cars. Rover manufactured a line of engines with a particularly efficient version of the IOE induction system.
A few designs with the reverse system, exhaust over inlet, or EOI, have been manufactured.
Description
In a F-head/IOE engine, the intake manifold and its valves are located atop the cylinders, in the cylinder head, and are operated by rocker arms which reverse the motion of the pushrods so that the intake valves open downward into the combustion chamber. The exhaust manifold and its valves are located beside or as part of the cylinders, in the block. The exhaust valves are either roughly or exactly parallel with the pistons; their faces point upwards and they are not operated by pushrods, but by contact with a camshaft through the tappet or valve lifter. The valves were offset to one side, forming what seemed to be a pocket, leading to the term "pocket valve" being used for IOE engines.
Origin
The earliest IOE layouts used atmospheric inlet valves which were held closed with a weak spring and were opened by the suction created when the piston went down on the inlet stroke. When the limits of this system were reached, the design was improved without substantial changes to the head casting by adding a mechanical system to open the inlet valves and stronger springs to close them. In both cases, the exhaust valves were in the block and were opened by contact with a camshaft through a tappet or valve lifter and closed by springs
Advantages
The IOE design allows the use of larger valves than a sidevalve (or L-head) or overhead valve engin Its advantages over the sidevalve/flathead also include a compact combustion chamber, a well-located spark plug, and a cooling effect from the mixture swirl, along with better intake mixture flow and greater reliability from its cooling of the exhaust valve and its spring.
Rover IOE engines
Rover used a more advanced form of IOE engine. It was designed by Jack Swain in the mid-late 1940s and was in production from 1948 to the early 1990s. Unlike the conventional F-head IOE, this had an efficient combustion chamber designed for good combustion, rather than simple manufacture. The top surface of the block was machined at an angle, with the piston crowns angled in a "pitched roof" to match. At TDC, the piston almost touched the angled inlet valve and provided good 'squish' to the combustion chamber itself, offset to the side by half a cylinder diameter. The resultant combustion chamber shape was a near-ideal hemisphere, although inverted and tilted from the usual "hemi-head" design. The spark plug was centrally mounted and this, together with the turbulence generated by the squish,provided a short flame path.The thinness of the gas layer between piston and inlet valve was so confined as to reduce the risk of detonation on poor fuel, one factor that kept it in service with Land Rover for so long. During the late 1940s and early 1950s when the only petrol available was low octane 'pool' petrol it also allowed Rover to run higher compression ratios than many competitors with the more usual side- or overhead valve designs.
The unusual combustion chamber arrangement with its angled valves also led to an unusual valve train. The block-mounted camshaft operates small wedge shaped rockers, one for each valve. In early models the camshaft acts on a simple pad on the rocker, but for later models this pad was replaced by a roller follower. The exhaust rockers act directly on the valves, whilst the inlet rockers act on pushrods running up to a second set of longer flat rockers operating the inlet valves. The Rover engine, like many 1940s and earlier British designs, was a small bore, long stroke engine to keep the RAC HP rating as low as possible, thus keeping the road tax as low as possible.The IOE layout enabled Rover to use larger valves than would normally be possible in a small bore engine, allowing better breathing and better performance.
The Rover IOE engine family encompassed straight-4 (1.6- and 2.0-litres) and straight-6 (2.1-, 2.2-, 2.3-, 2.4-, 2.6- and 3.0-litres) engines and powered much of the company's post-war range in the form of the P3, P4 and P5 models. Adapted versions of the 1.6 and 2.0 IOE engines were used in early version of the Land Rover as well. Power outputs ranged from 50bhp (Land Rover 1.6) to 134bhp (P5 3 litre MkII & III). The 2.6 6-cylinder IOE engine had a particularly long career. After being used in Rover P4 saloon cars it was added to long-wheelbase Land Rover models from 1963 in the 2A Forward Control models, then in 1967 in the bonneted 109", and remained an optional fitment until 1980 when it was replaced by the Rover V8.
Similar Packard cylinder head
The shape of the combustion chamber as an "inverted hemi-head", along with the angled cylinder head joint and pitched-roof piston crowns, had earlier been used in the 1930 Van Ranst-designed Packard V12 engine, although in this case the valves were both in the block as side valves and the spark plug was poorly placed at the extremity of the combustion chamber.
- Automobiles
Hudson used an IOE inline-four engine in its Essex line of cars from 1919 to 1923 and an IOE straight-six engine in its Hudson line of cars from 1927 to 1929. Willys, and its successor Kaiser-Jeep, used variants of the Willys Hurricane engine from 1950 to 1971.
Rolls-Royce used an IOE straight-six engine in their Silver Wraith Rolls-Royce also made the FB60 engine, a straight-six IOE engine displacing 3909cc and producing a claimed 175 hp. The FB60 engine was used in the Vanden Plas Princess 4-litre R saloon car. Over 6000 of these cars were made.
Exhaust over intake (EOI)
Some engines have been made with the reverse configuration, having the exhaust valve in the cylinder head and the intake valve in the block. The ABC Skootamota began production with an engine of this configuration, but this was changed to an overhead valve engine before production ended.