Motor Car History
Technical History of the Motor Car

      

1890s  1900s  1910s  1920s  1930s  1940s  1950s  1960s   1970s  1980s  1990s  2000s  2010s

Toggle Navigation
  • Home
  • Makes and models
  • Motor car History
  • Motor Car Guide
    • Engines By Make
    • Engine Components
    • Electrical & electronic
    • Gearbox & Drivetrain
    • Induction & Exhaust
    • Suspension Types
    • Tyres wheels Brakes
    • Vehicle Body types
  • Trivia
  • links
    • Advertise your business
  • Register
  • Top rated
Category
Germany
Engines
1990s

BMW M60 V8 Engine

From 1992 to 1996

 BMW M60 V8 Engine specification From 1992 to 1996
 

BMW M60 Among other things, the engine was installed in the BMW 730i, 740i / 740iL of the E32 and E38 series , in the BMW E34 530i and 540i and in the BMW E31 830i (prototypes only) and 840i. The M60 replaced the M30 in the BMW E34. For the BMW E32 , the M30B30 was offered alongside the M60.

The BMW M60 was also used in other cars, of which especially the De Tomaso Guarà is worth a mention.

Design features 

The very compact and rigidly designed crankcase with a cylinder angle of 90 ° using CAD software consists of an aluminum alloy (AlSi9Cu3), as well as the oil sump and the cylinder head; Thus, the complete engine with attachments weighs only 209.4 kg (M60B30 with manual transmission, M60B40: 213.2 kg), the bare block even only 25 kg and each of the two (different length) cylinder heads 30 kg. The cylinder head covers consist of a magnesium alloy.

The crankshaft with spigot offset by 90 ° is mounted 5-fold and has two large and four small counterweights to improve smooth running. With the 3.0-liter engine, the crankshaft stroke is 67.6 mm and the crankshaft is cast , the 4.0-liter version has a crankshaft stroke of 80 mm and the crankshaft is forged . The connecting rods were first produced by sintering in a BMW mass-produced engine . The selective breaking of the connecting rod (→  "cracked connecting rod" ) ensures the highest accuracy of fit and makes the conventional centering of the connecting rod and connecting rod cover over dowel sleeves superfluous.

The engine has two overhead mass- compensated camshafts per cylinder bank ( eccentrically offset engine vibration compensation sections ), which are driven by the crankshaft via dual- pulley chains (duplex chain), with the drive running on the two intake camshafts. From there, the exhaust camshaft is controlled via a further double-roller chain. The identical camshafts for both M60 variants are designed as solid shafts in shell casting. They are 5-fold, with the camshaft bearings divided. Due to the different length cylinder heads of each cylinder bank and the camshafts are different lengths. The valve angles are (as in the BMW M50) 20 ° 15 'on the inlet side and 19 ° 15' on the outlet side.

Between the two cylinder banks is the intake manifold of reusable plastic ( nylon ), whose smooth plastic surfaces are characterized by their low flow resistance. Four valves per cylinder provide gas exchange, which are moved by bucket tappets with automatic hydraulic backlash compensation. The spark plugs sit centrally between the four valves per cylinder, and are driven by a static ignition distribution , in which each spark plug has its own ignition coil. The engine control was carried out by the fully digital Bosch Motronic 3.3, which used the mixture with the aid of the lambda probe(Catalyst versions) and double knock control controlled. For the export market (mainly Eastern Europe and Asia) versions without catalyst were also sold.

For the first time in mass production, BMW became the world's first automobile manufacturer to implement a nickel dispersion coating for the cylinder liners of the M60 eight- cylinder engine. Since the aluminum alloy AlSi9Cu3 used for the crankcase does not have the required wear resistance, the surface of the cylinder bore had to be protected. 

In the BMW M70 twelve-cylinder engine , the cylinder crankcase was manufactured from a hypereutectic aluminum alloy (with 17% silicon content). After casting, the alloy was deliberately cooled, so that during the solidification process silicon precipitates formed on the cylinder liners. The silicon crystals were exposed by machining or etching the cylinder liners and provided due to their good tribological properties for wear protection. The disadvantage, however, was that the acting as a friction partner piston iron-coated and the piston rings had to be chromium-plated.

BMW has been providing the cylinder liners of motorcycle engines with a nickel dispersion layer since 1984. When coating a motorcycle crankcase, however, the entire crankcase is submerged. For the BMW M60 was a further development to the so-called "flood process". After the fine turning of the cylinder bore, a nickel dispersion layer was galvanically deposited on the cylinder wall. In the nickel layer was thereby very finely distributed silicon carbide(SiC) embedded in the nickel layer. Nickel thus serves as a binder or carrier layer, SiC takes over the wear protection. The patented process makes it possible to selectively coat only the cylinder bores themselves in the desired shape and material thickness. Each hole receives a separate circuit and is flooded separately. After application of the nickel dispersion layer , this was removed in a final honing process by about half to 0.04 mm. 

Advantageous is the BMW patented method  u. a. for the following reasons:

  • As a material for the cylinder crankcase, a "normal" and thus cost aluminum alloy can be selected.
  • The pistons do not have to be iron-coated.
  • The piston rings can remain uncoated.
  • At the time of coating, the crankcase can already be largely finished.
  • Recoats are possible.

The BMW M60, given regular maintenance and low-speed warming, is considered a rugged and durable engine. Like virtually every engine, the M60 has some weaknesses.

The screws of the oil pump can loosen during operation and fall into the underlying oil pan. They should therefore be checked immediately after the (used) purchase for a tight fit and secured as a precaution by means of screw locking permanently. This eliminates a regular check.

The M60 has factory-built ceramic catalysts, where more often the newer (round) variants can collapse due to aging and then clog the exhaust; However, in the aftermarket also metal catalysts are available.

At the beginning of production, the BMW M60 experienced engine damage mainly in the US and the UK, which was attributed to a failure of the nickel dispersion-coated cylinder surfaces of the crankcase. The disadvantage with nickel-plated surfaces is the high sensitivity of the nickel (and its alloys) to sulfur-containing gases, i. H. the nickel sulfide formation at the grain boundaries lead to cold and red brittleness of the nickel. 

In 1998, US refineries produced fuels with sulfur contents between ≤ 100 ppm and in some cases> 500 ppm (≙ 0.05 % by weight ).The EPA was in early 2000 on the assumption that 330 ppm of sulfur contained in US fuel on average. With the completion of Tier 2 , US refineries have been required to progressively reduce the sulfur content of the fuel. For the year 2004, an average sulfur content of 120 ppm (maximum 300 ppm) was allowed, until 2006, sulfur limits of an average of 30 ppm (maximum 80 ppm) had to be complied with. This corresponds to the (currently in Europe by desulphurization usual) sulfur-free motor gasoline .

Alpina 

On the basis of the M60B40, Alpina built a power engine with the same displacement, which was used in the BMW Alpina B10 4.0 (saloon and touring) and in the B11 4.0 and some B8 4.0 for Japan, with an output of 232 kW.

In addition, there was a larger capacity second expansion stage with 4619 cc, which came in the B8 4.6 , and in the B10 4.6 (sedan and touring) used. This variant offers an output of 250 kW in the two B10s and 245 kW in the B8 due to a modified exhaust system.

Data 

enginecapacityBore × strokeValves / cyl.compressionPower at 1 / minTorque at 1 / minconstruction time
M60B303.0 l (2997 cm 3 )84.0 mm × 67.6 mm410.5: 1160 kW (218 hp) at 5800290 Nm at 45001992-1995
M60B404.0 l (3982 cm 3 )89.0 mm × 80.0 mm410.0: 1210 kW (286 hp) at 5800400 Nm at 45001992-1995
Alpina4.0 l (3982 cm 3 )89.0 mm × 80.0 mm410.8: 1232 kW (315 hp) at 5800410 Nm at 46001992-1994
Alpina4.6 l (4619 cm 3 )93.0 mm × 85.0 mm410.3: 1245 kW (333 hp) at 5800470 Nm at 46001992-1994
Alpina4.6 l (4619 cm 3 )93.0 mm × 85.0 mm410.3: 1250 kW (340 hp) at 5800470 Nm at 46001992-1994

Data Valve Control 

The BMW M60 is a V8 gasoline engine of the car manufacturer BMW . The engine was developed from 1984, from September 1992, the BMW M60 came in various models in the sale. After the old BMW numbering system, there was an M60 from 1977, which was then led as a BMW M20 and is known hereunder.

Models

EngineDisplacementPowerTorqueRedlineYear
M60B303.0 L (2,997 cc (183 cu in))160 kW (218 PS; 215 hp) @ 5800290 N·m (214 lb·ft)) @ 450065001992
M60B404.0 L (3,982 cc (243 cu in))210 kW (286 PS; 282 hp) @ 5800400 N·m (295 lb·ft)) @ 450065001992

M60B30

BMW M60 V8 M60B30 Engine specification

The M60B30 has a bore of 84 mm (3.3 in) and a stroke of 67.6 mm (2.7 in), for a displacement of 2,997 cc (183 cu in). Compression ratio is 10.5:1, giving an output of 160 kW (218 PS; 215 hp) at 5800 rpm and 290 N·m (214 lb·ft) at 4500 rpm.

BMW 7 series E32 730i specification

Engine Size2997cc
Cylinders8
Valves32
Fuel TypePetrol
Power218 bhp
Top Speed145 mph
0-60 mph9.4 secs

Applications:

  • 1992-1995 E34 530i
  • 1992-1994 E32 730i
  • 1994-1996 E38 730i

M60B40

The M60B40 has a bore of 89 mm (3.5 in) and a stroke of 80 mm (3.1 in), for a total displacement of 3,982 cc (243 cu in). Compression ratio is 10.0:1,giving 210 kW (286 PS; 282 hp) at 5800 rpm and 400 N·m (295 lb·ft) at 4500 rpm. It had a forged crankshaft.

BMW 8 series E31 840i specification

Engine Size3982cc
Cylinders8
Valves32
Fuel TypePetrol
Power286 bhp
Top Speed155 mph
0-60 mph6.7 secs
Torque420 Nm

Applications:

  • 1993-1995 E34 540i
  • 1992-1994 E32 740i
  • 1994-1996 E38 740i
  • 1992-1996 E31 840i
  • 1993-1998 De Tomaso Guarà

Nikasil damage from high-sulfur fuels

BMW used Nikasil- an aluminium, nickel, and silicon alloy- to line the cylinders of the M60 engines. In fuels with high sulfur content (such as used fuels sold in the United States, UK and South America), the sulfur damages the Nikasil bore lining, causing the engine to lose compression.BMW replaced engines under warranty and Nikasil was eventually replaced by Alusil.In the USA and UK, sulfur rich fuel is being phased out.Nikasil engines are unlikely to be a problem today, as cars with affected engines are off the road or have received replacement engines.

Categories
Bmw Engines
Title
BMW M60 V8 Engine (1992-1996)

Description

Have you Say: Rate this
Overall Vote
100% - 1 vote
  • 1
  • 2
  • 3
  • 4
  • 5
1. Performance & Specification
  • 1
  • 2
  • 3
  • 4
  • 5
Built to last?
2. Appearance Overall *Cool factor*
  • 1
  • 2
  • 3
  • 4
  • 5
How good it looks ?
Related items
De Tomaso Guara | BMW 8 Series | Petrol Engines | BMW V8 Engines | BMW Petrol Engines | V8 engines | BMW 7 Series | BMW 5 Series

Technical

Technical
  • Manufacturer: BMW Model: 8 Series (E31) 4,0 840i Output: 210 (286) @ 5800 1993-1999

    No. of cylinders Type 8/DOHC
    Capacity 3982cc
    Compression ratio 10.0:1
    Suitable for unleaded petrol Yes
    Minimum octane rating 95 RON
    Ignition system Make Bosch Motronic
    Diagnostic socket Yes
    Firing order 1-5-4-8-6-3-7-2
    Oil pressure bar 4.5 Max
    Radiator cap bar 1.9-2.1
    Thermostat opens 85 °C
    © Motor car History 

     

Service
  • Service details BMW 8 Series (E31) 4,0 840i V8 Output: 210 (286) @ 5800 1993-1999

    Spark plugs Original equipment Bosch Type F7LDCR
    Spark plugs Electrode gap 0.9 mm
    Spark plugs Make Beru Type 14F-7LDUR4
    Spark plugs Make Champion Type RC8DMC
    Spark plugs Make NGK Type BKR6EK
    Valve clearance -INLET Hydraulic
    Valve clearance -EXHAUST Hydraulic
    Engine oil grade - cold climate 5W/30 SAE
    Engine oil grade - normal climate 10W/40 SAE or 10W/60 Synthetic
    Engine oil grade - hot climate 15W/40 SAE
    Engine oil with filter 7.5 litres
    Manual oil gearbox 4/5 speed 2.3 litres
    Automatic transmission fluid 3,0 litres
    Differential oil grade - rear 90W SAE 1.9 litres
    Cooling system 12.5 litres
    Brake fluid Type DOT 4
    Power steering fluid Type Dexron II/CHF 7.1/11 S

    © Motor car History 

Manuals

Download: Workshop manuals Tech Guides exclusive to registered users.

Media

BMW 8 Series (E31) 840i 850i & B12

Author Motor car History Duration 04:56

Engine Makes

  • Alfa Romeo
  • AMC
  • Audi
  • Aston Martin
  • Aster
  • Austin
  • Blackburne
  • British Leyland
  • BMW
  • Bentley
  • Cosworth
  • Chapuis-Dornier
  • Coventry Climax
  • Citroen
  • Chevrolet
  • Dorman
  • Daihatsu
  • Dodge
  • Daimler
  • Ferrari
  • Fafnir
  • Ford
  • Honda
  • Hyundai
  • ILO
  • Jap
  • Jaguar
  • Lamborghini
  • Lexus
  • Lancia
  • Land Rover
  • Leyland
  • Lotus
  • Mazda
  • Meadows
  • Mercedes
  • MG
  • Nissan
  • Porsche
  • Perkins
  • Reliant
  • Renault
  • Rolls-Royce
  • Rover
  • Sachs
  • Saab
  • SEAT
  • Subaru
  • Suzuki
  • Toyota
  • Triumph
  • TVR
  • Vauxhall-Opel
  • Vickers
  • Villiers
  • Volkswagen
  • Volvo
  • White & Poppe
  • Worldwide
  • Argentina
  • Australia
  • Austria
  • Belgium
  • Brazil
  • British
  • Bulgaria
  • canada
  • Czech
  • Chile
  • Czechoslovakia
  • China
  • Denmark
  • Egypt
  • Finland
  • Greece
  • Guernsey
  • Germany
  • Hungary
  • India
  • Ireland
  • Indonesia
  • Korean
  • Mexico
  • Netherlands
  • New Zealand
  • Norway
  • Philippines
  • Poland
  • Portugal
  • South Africa
  • sweden
  • Romania
  • Turkey
  • Spain
  • Switzerland
  • Taiwan
  • Serbia
  • Uruguay
  • Ukraine
  • United States
  • Venezuela
  • Yugoslavia

log on

Log in to Motor car

  • Forgot your username?
  • Forgot your password?

Welcome To Motor Car

Please help to keep this site active.

Engines types

  • Petrol
  • Diesel
  • V4
  • V6
  • V8
  • V10
  • V12
  • Straight-2
  • Straight-3
  • Straight-4
  • Straight-5
  • Straight 6
  • Straight-8
  • Flat-4
  • Flat-6
  • Two-stroke
  • BMW M Series
  • BMW 5 Series
  • BMW 3 Series
  • BMW 7 Series
  • BMW Engines
  • BMW X Series
  • Straight 6 Engines
  • Diesel engines
  • V8 engines
  • BMW Z Series
  • BMW Petrol Engines
  • BMW diesel Engines
  • BMW Straight 6
  • BMW V8 Engines
  • BMW Straight 4
  • Straight-4 Engines
  • Petrol Engines
  • BMW 2 Series
  • BMW 1 Series
  • BMW 6 Series

Enjoy all of Motor Car Here


  • You are here:  
  • Motor Car
  • Motor Car Guide
  • Engines Makes
  • Bmw Engines
  • BMW M60 V8 Engine (1992-1996)

Back to Top

© 2025 Motor Car History